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Abstract
Let q(x, t) satisfy the Dirichlet initial-boundary value problem for the nonlinear
Schrödinger equation on the finite interval, 0 < x < L, with q0(x) =
q(x, 0), g0(t) = q(0, t), f0(t) = q(L, t). Let g1(t) and f1(t) denote the
unknown boundary values qx(0, t) and qx(L, t), respectively. We first show
that these unknown functions can be expressed in terms of the given initial and
boundary conditions through the solution of a system of nonlinear ODEs. For
the focusing case it can be shown that this system has a global solution. It
appears that this is the first time in the literature that such a characterization is
explicitly described for a nonlinear evolution PDE defined on the interval; this
result is the extension of the analogous result of [4] and [20] from the half-line to
the interval. We then show that q(x, t) can be expressed in terms of the solution
of a 2×2 matrix Riemann–Hilbert problem formulated in the complex k-plane.
This problem has explicit (x, t) dependence in the form exp[2ikx + 4ik2t], and
it has jumps across the real and imaginary axes. The relevant jump matrices
are explicitly given in terms of the spectral data {a(k), b(k)}, {A(k), B(k)}, and
{A(k),B(k)}, which in turn are defined in terms of q0(x), {g0(t), g1(t)}, and
{f0(t), f1(t)}, respectively.

PACS numbers: 02.30.Ik, 02.30.Jr,

1. Introduction

We analyse the Dirichlet initial-boundary value problem for the nonlinear Schrödinger (NLS)
equation on a finite interval:

iqt + qxx − 2λ|q|2q = 0 λ = ±1 0 < x < L 0 < t < T

q(x, 0) = q0(x) 0 < x < L

q(0, t) = g0(t) q(L, t) = f0(t) 0 < t < T

(1.1)

0305-4470/04/236091+24$30.00 © 2004 IOP Publishing Ltd Printed in the UK 6091
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where L, T are positive constants and q0, g0, f0 are smooth functions compatible at x = t = 0
and at x = L, t = 0, i.e. q0(0) = g0(0), q0(L) = f0(0).

Our analysis is based on the extension of the results of [4], [6] and [20] from the half-line
to the interval.

The analysis involves three steps.

Step 1. A RH formulation under the assumption of existence. We assume that there exists a
smooth solution q(x, t).

We use the simultaneous spectral analysis of the associated Lax pair of the NLS to
express q(x, t) in terms of the solution of a (2 × 2)-matrix Riemann–Hilbert (RH) problem
defined in the complex k-plane. This problem has explicit (x, t) dependence in the form of
exp{2i(kx + 2k2t)}, and it is uniquely defined in terms of the so-called spectral functions,

{a(k), b(k)} {A(k), B(k)} {A(k),B(k)}. (1.2)

These functions are defined in terms of

q0(x) {g0(t), g1(t)} {f0(t), f1(t)} (1.3)

respectively, where g1(t) and f1(t) denote the unknown boundary values qx(0, t) and qx(L, t).
We show that the spectral functions (1.2) are not independent but they satisfy the global

relation

(aA + λb̄e2ikLB)B − (bA + ā e2ikLB)A = e4ik2T c+(k) k ∈ C (1.4)

where c+(k) is an entire function which is of O(1/k) as → ∞, Im k > 0; in fact,

c+(k) = O

(
1 + e2ikL

k

)
k → ∞.

Step 2. Existence under the assumption that the spectral functions satisfy the global relation.
Motivated from the results of step 1, we define the spectral functions (1.2) in terms of the
smooth functions (1.3). We also define q(x, t) in terms of the solution of the RH problem
formulated in step 1. We assume that there exist smooth functions g1(t) and f1(t) such that
the spectral functions (1.2) satisfy the global relation (1.4). We then prove that (i) q(x, t) is
defined globally for all 0 < x < L, 0 < t < T ; (ii) q(x, t) solves the NLS equation; (iii)
q(x, t) satisfies the given initial and boundary conditions, i.e. q(x, 0) = q0(x), q(0, t) = g0(t),
q(L, t) = f0(t). A byproduct of this proof is that qx(0, t) = g1(t) and qx(L, t) = f1(t).

Step 3. The analysis of the global relation. Given q0, g0, f0, we show that the global relation
(1.4) characterizes g1 and f1 through the solution of a system of nonlinear Volterra integral
equations. For the focusing case using the results of [20], it can be shown that there exists a
global solution. For the defocusing case the rigorous investigation of these equations remains
open.

We now discuss further the above three steps.
The analysis of step 1 is based on the introduction of appropriate eigenfunctions which

satisfy both parts of the Lax pair. It was shown in [1] that for linear PDEs defined in a polygonal
domain with N corners, there exists a canonical way of choosing such eigenfunctions: there
exist N such eigenfunctions each of them normalized with respect to each corner. Motivated
by this result we introduce four eigenfunctions, {µj(x, t, k)}4

1, see figure 1, such that

µ1(0, T , k) = I µ2(0, 0, k) = I µ3(L, 0, k) = I µ4(L, T , k) = I (1.5)
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Figure 1. The normalization points of {µj (x1t1k)}4
j=1.

where µj are 2 × 2 matrices and I = diag(1, 1). It can be shown that these eigenfunctions are
simply related through the three matrices s, S, SL

s(k) = µ3(0, 0, k), S(k) =
(

e2ik2T σ3µ2(0, T , k) e−2ik2T σ3

)−1

SL(k) =
(

e2ik2T σ3µ3(L, T , k) e−2ik2T σ3

)−1
(1.6)

where σ3 = diag(1,−1). These matrices satisfy certain symmetry properties, thus they can
be represented by

s(k) =

 a(k̄) b(k)

λb(k̄) a(k)


 S(k) =


 A(k̄) B(k)

λB(k̄) A(k)


 SL(k) =


 A(k̄) B(k)

λB(k̄) A(k)


.

(1.7)

Regarding step 2 we note that equations (1.6), (1.7) motivate the following definitions:
let the vectors

(φ1(x, k), φ2(x, k))† (�1(t, k),�2(t, k))† (ϕ1(t, k), ϕ2(t, k))† (1.8a)

solve the x-part of the Lax pair evaluated at t = 0, the t-part of the Lax pair evaluated at x = 0
and the t-part of the Lax pair evaluated at x = L, respectively, and let these vectors satisfy the
boundary conditions

(φ1(L, k), φ2(L, k))† = (0, 1)†

(�1(0, k),�2(0, k))† = (0, 1)† (1.8b)

(ϕ1(0, k), ϕ2(0, k))† = (0, 1)†.

Define the spectral functions (1.2) by

a(k) = φ2(0, k) b(k) = φ1(0, k)

A(k) = A(T , k) B(k) = B(T , k) A(k) = A(T , k) B(k) = B(T , k)

where

A(t, k) = �2(t, k̄) B(t, k) = −e4ik2t�1(t, k)

A(t, k) = ϕ2(t, k̄) B(t, k) = −e4ik2tϕ1(t, k).
(1.9)

We note that the functions (1.2) depend on the functions (1.3).
The global existence of q(x, t) is based on the unique solvability of the associated RH

problem, which in turn is based on the distinctive nature of the functions defining the jump
matrices: these functions have explicit (x, t) dependence in an exponential form and they
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involve the spectral functions s(k), S(k), SL(k), which have the symmetry properties expressed
in equations (1.7). Using these facts it can be shown that the associated homogeneous RH
problem has only the trivial solution (i.e. there exists a vanishing lemma). The proof that
q(x, t) solves the given nonlinear PDE uses the standard arguments of the dressing method
[2]. The proof that q(0, t) = q0(x), is based on the fact that the RH problem satisfied at
t = 0 is equivalent to a RH problem defined in terms of s(k) which characterizes q0(x). The
proofs that

{
∂l
xq(0, t) = gl(t)

}1
0 and that

{
∂l
xq(L, t) = fl(t)

}1
0, make crucial use of the global

relation (1.4). Indeed, it can be shown that the RH problems at x = 0 and at x = L,
are equivalent to RH problems involving only S(k) and SL(k) (which in turn characterize
{gl(t)}1

l=0 and {fl(t)}1
l=0), if and only if the spectral functions satisfy the global relation.

Thus this relation is not only a necessary but also a sufficient condition for existence. Hence
given {q0, g0, f0}, the main problem becomes to show that the global relation characterizes
g1 and f1.

The analysis of step 3 is based on the Gelfand–Levitan–Marchenko representation of the
eigenfunctions � = (�1,�2)

† and ϕ = (ϕ1, ϕ2)
†. Using these representation, it can be shown

[3] that � can be expressed in terms of four functions {Mj(t, s), Lj (t, s)}2
1, −t < s < t, t > 0,

satisfying four PDEs (see [3]) as well as the boundary conditions

L1(t, t) = i

2
g1(t) L2(t,−t) = 0 M1(t, t) = g0(t) M2(t,−t) = 0. (1.10)

Similarly ϕ can be expressed in terms of the four functions {Mj (t, s),Lj (t, s)}2
1 satisfying

L1(t, t) = i

2
f1(t) L2(t,−t) = 0 M1(t, t) = f0(t) M2(t,−t) = 0. (1.11)

Using definitions (1.9) it can be shown that [4]

A(t, k) = 1 +
∫ t

0
e4ik2τ [2L2(t, t − 2τ) − iλg0(t)M1(t, t − 2τ) + 2kM2(t, t − 2τ)] dτ,

B(t, k) = −
∫ t

0
e4ik2τ [2L1(t, 2τ − t) − ig0(t)M2(t, 2τ − t) + 2kM1(t, 2τ − t)] dτ.

(1.12)

Similar expressions are valid for A and B , where L1,M1, M2, g0 are replaced by L1,M1,

M2, f0 respectively. Substituting the expressions for A,B,A,B in the global relation (1.4)
and letting k → −k in the resulting equation, we obtain two relations coupling

g0, f0, L1,M1,M2,L1,M1,M2. (1.13)

It is remarkable that these two relations can be explicitly solved for g1 and f1 in terms of the
quantities appearing in (1.13).

Having solved the global relation it is now more convenient to formulate the final result
in terms of the functions

{L̂j (t, k), M̂j (t, k), L̂j (t, k),M̂j (t, k)}2
j=1 (1.14)

where

L̂j (t, k) =
∫ t

−t

e2ik2(s−t)Lj (t, s) ds (1.15)

and similarly for M̂j , L̂j ,M̂j . Using this notation, the explicit formulae of g1 and f1 in terms
of the quantities appearing in (1.13) can be expressed explicitly in terms of

{g0, f0, L̂1, M̂1, M̂2, L̂1,M̂1,M̂2}



The nonlinear Schrödinger equation on the interval 6095

see equations (4.7) and (4.8). The Gelfand–Levitan–Marchenko representations imply that
{L̂j , M̂j }2

j=1, for t > 0, k ∈ C, satisfy the ODEs

L̂1t
+ 4ik2L̂1 = ig1(t)L̂2 + χ1(t)M̂1 + χ2(t)M̂2 + ig1(t)

L̂2t
= −iλg1(t)L̂1 − χ1(t)M̂2 + λχ̄2(t)M̂1

M̂1t
+ 4ik2M̂1 = 2g0(t)L̂2 + ig1(t)M̂2 + 2g0(t)

M̂2t
= 2λg0(t)L̂1 − iλg1(t)M̂1

(1.16)

as well as the initial conditions

L̂j (0, k) = M̂j (0, k) = 0 j = 1, 2

where the functions χ1(t) and χ2(t) are defined by

χ1(t) = λ

2
(g0g1 − g0g1) χ2(t) = 1

2

dg0

dt
− ρ|g0|2g0. (1.17)

{L̂j ,M̂j }2
j=1 satisfy similar equations with g0, g1 replaced by f0, f1.

Substituting the expressions for g1 and f1 from (4.7), (4.8) in equations (1.16) and
the analogous equations for {L̂j ,M̂j }2

j=1, we obtain a system of nonlinear Volterra integral

equations for the functions {L̂j , M̂j , L̂j ,M̂j }2
j=1 in terms of g0 and f0. It is shown in [20]

that equations (1.16) imply

|kM̂2|2 − ρ|kM̂1|2 +
∣∣∣1 + L̂2 +

iρ

2
ḡ0(t)M̂1

∣∣∣2
− ρ

∣∣∣L̂1 − i

2
g0(t)M̂2

2
∣∣∣ = 1 Im k2 = 0.

This equation implies that for the focusing case (ρ = −1) there exists a global solution. The
question of existence for the defocusing case (ρ = 1) remains open.

Organization of the paper and notations. Steps 1–3 are implemented in sections 2–4.
In addition to the notation (1.7) the following notation will also be used:

s(k) eikLσ̂3SL(k) ≡ s(k) eikLσ3SL(k) e−ikLσ3 =

 α(k̄) β(k)

λβ(k̄) α(k)


 . (1.18)

µ(∗) denotes a function which is analytic and bounded for {k ∈ C, arg k ∈ L∗}, where

L1 :
[
0,

π

2

]
L2 :

[π

2
, π

]
L3 :

[
π,

3π

2

]
(1.19)

L4 :

[
3π

2
, π

]
L12 : L1 ∪ L2 etc.

2. A Riemann–Hilbert formulation under the assumption of existence

The NLS equation admits the Lax pair [17] formulation [18]

µx + ikσ̂3µ = Qµ µt + 2ik2σ̂3µ = Q̃µ (2.1)

where µ(x, t, k) is a 2 × 2 matrix-valued function, σ̂3 is defined by

σ̂3· = [σ3, ·] σ3 = diag(1,−1) (2.2)

and the 2 × 2 matrices Q, Q̃ are defined by

Q(x, t) =
(

0 q(x, t)

λq̄(x, t) 0

)
Q̃(x, t, k) = 2kQ − iQxσ3 − iλ|q|2σ3 λ = ±1.

(2.3)
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The definition of σ̂3 implies that if A is a 2 × 2 matrix, then

eσ̂3A = eσ3A e−σ3 . (2.4)

Equations (2.1) can be rewritten as

d
(
ei(kx+2k2t)σ̂3µ(x, t, k)

) = W(x, t, k) (2.5)

where the closed 1-form W is defined by

W = ei(kx+2k2t)σ̂3(Qµ dx + Q̃µ dt). (2.6)

Throughout this section we assume that there exists a sufficiently smooth solution
q(x, t), x ∈ [0, L], t ∈ [0, T ], of the NLS equation.

A solution of equation (2.5) is given by

µ∗(x, t, k) = I +
∫ (x,t)

(x∗,t∗)
e−i(kx+2k2t)σ̂3W(y, τ, k) (2.7)

where (x∗, t∗) is an arbitrary point in the domain x ∈ [0, L], t ∈ [0, T ], and the integral
denotes a line integral connecting smoothly the points indicated. Following [1] we choose the
point (x∗, t∗) as each of the corners of the polygonal domain. Thus we define four different
solutions µ1, . . . , µ4, corresponding to (0, T ), (0, 0), (L, 0), (L, T ), see figure 1.1.

By splitting the line integrals into integrals parallel to the t and the x axis we find

µ2(x, t, k) = I +
∫ x

0
e−ik(x−y)σ̂3(Qµ2)(y, t, k) dy + e−ikxσ̂3

∫ t

0
e−2ik2(t−τ)σ̂3(Q̃µ2)(0, τ, k) dτ

(2.8)

µ3(x, t, k) = I −
∫ L

x

e−ik(x−y)σ̂3(Qµ3)(y, t, k) dy + e−ik(x−L)σ̂3

×
∫ t

0
e−2ik2(t−τ)σ̂3(Q̃µ3)(L, τ, k) dτ. (2.9)

µ1 and µ4 satisfy equations similar to those of µ2 and µ3 where
∫ t

0 is replaced by − ∫ T

t
.

Note that all the µj are entire functions of k.

2.1. Eigenfunctions and their relations

The definitions of µj , j = 1, . . . , 4, and the notation (1.19) imply

µ1 = (
µ

(2)
1 , µ

(3)
1

)
µ2 = (

µ
(1)
2 , µ

(4)
2

)
µ3 = (

µ
(3)
3 , µ

(2)
3

)
µ4 = (

µ
(4)
4 , µ

(1)
4

)
.

(2.10)

The functions µ1(0, t, k), µ2(0, t, k), µ3(x, 0, k), µ3(L, t, k), µ4(L, t, k) are bounded in
larger domains:

µ1(0, t, k) = (
µ

(24)
1 (0, t, k), µ

(13)
1 (0, t, k)

)
µ2(0, t, k) = (

µ
(13)
2 (0, t, k), µ

(24)
2 (0, t, k)

)
µ3(x, 0, k) = (

µ
(34)
3 (x, 0, k), µ

(12)
3 (x, 0, k)

)
µ3(L, t, k) = (

µ
(13)
3 (L, t, k), µ

(24)
3 (L, t, k)

)
µ4(L, t, k) = (

µ
(24)
4 (L, t, k), µ

(13)
4 (L, t, k)

)
.

(2.11)

The matrices Q and Q̃ are traceless, thus

det µj(x, t, k) = 1 j = 1, . . . , 4. (2.12)
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The definitions of µ
(∗)
j imply that in the domains where these functions are bounded, they

satisfy

µ
(∗)
j (x, t, k) = I

(∗)
j + O

(
1

k

)
k → ∞ (2.13)

where vector I
(∗)
j is either (0, 1)† or (1, 0)†, depending on which column of µj is denoted

by µ
(∗)
j .
The functions µj are related by the equations

µ3(x, t, k) = µ2(x, t, k) e−i(kx+2k2t)σ̂3s(k) (2.14)

µ1(x, t, k) = µ2(x, t, k) e−i(kx+2k2t)σ̂3S(k) (2.15)

µ4(x, t, k) = µ3(x, t, k) e−i[k(x−L)+2ik2t]σ̂3SL(k). (2.16)

Evaluating equation (2.14) at x = t = 0 we find s(k) = µ3(0, 0, k). Evaluating equation (2.15)
at x = t = 0 we find S(k) = µ1(0, 0, k); evaluating equation (2.15) at x = 0, t = T

we find S(k) = (
e2ik2T σ̂3µ2(0, T , k)

)−1
. Evaluating equation (2.15) at x = L, t = 0 we

find SL(k) = µ4(L, 0, k); evaluating equation (2.16) at x = L, t = T we find SL(k) =(
e2ik2T σ̂3µ3(L, T , k)

)−1
. Equations (2.14) and (2.16) imply

µ4(x, t, k) = µ2(x, t, k) e−i(kx+2k2t)σ̂3
(
s(k) eikLσ̂3SL(k)

)
. (2.17)

The symmetry properties of Q and Q̃ imply

(µ(x, t, k))11 = (µ(x, t, k̄))22 (µ(x, t, k))21 = λ(µ(x, t, k̄))12. (2.18)

The definitions of µ3(0, 0, k), µ2(0, T , k), µ3(L, 0, k) imply

s(k) = I −
∫ L

0
eikyσ̂3(Qµ3)(y, 0, k) dy (2.19)

S−1(k) = I +
∫ T

0
e2ik2τ σ̂3(Q̃µ2)(0, τ, k) dτ (2.20)

S−1
L (k) = I +

∫ T

0
e2ik2τ σ̂3(Q̃µ3)(L, τ, k) dτ. (2.21)

The symmetry conditions (2.18) justify the notation (1.7).
Equations (2.11), the determinant condition (2.12) and the large k behaviour of µj imply

the following properties:

a(k), b(k)

• a(k), b(k) are entire functions.
• a(k)a(k̄) − λb(k)b(k̄) = 1, k ∈ C.
•

a(k) = 1 + O

(
1 + e2ikL

k

)
b(k) = O

(
1 + e2ikL

k

)
k → ∞.

In particular,

a(k) b(k) a(k̄) e2ikL b(k̄) e2ikL are bounded for arg k ∈ [0, π ]. (2.22)
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A(k), B(k)

• A(k), B(k) are entire functions.
• A(k)A(k̄) − λB(k)B(k̄) = 1, k ∈ C.
•

A(k) = 1 + O

(
1 + e4ik2T

k

)
B(k) = O

(
1 + e4ik2T

k

)
k → ∞. (2.23)

In particular

A(k) B(k) are bounded for arg k ∈
[
0,

π

2

]
∪

[
π,

3π

2

]
.

A(k),B(k)

Same as A(k), B(k).

2.2. The global relation

Proposition 2.1. Let the spectral functions a(k), b(k), A(k), B(k),A(k), B(k) be defined in
equations (1.7), where s(k), S(k), SL(k) are defined by equations (1.6), and µ2, µ3 are defined
by equations (2.8), (2.9) in terms of the smooth function q(x, t). These spectral functions are
not independent but they satisfy the global relation (1.4) where c+(k) denotes the (12) element
of − ∫ L

0 [exp(ikyσ̂3)](Qµ4)(y, T , k) dy, and µ4 is defined by an equation similar to µ3 with∫ t

0 replaced by − ∫ T

t
.

Proof. Evaluating equation (2.17) at x = 0, t = T and writing µ2(0, T , k) in terms of S(k)

we find

µ4(0, T , k) = e−2ik2T σ̂3(S−1(k)s(k) eikLσ̂3SL(k)).

Multiplying this equation by exp[2ik2T σ̂3] and using the definition of µ4(x, T , k) we find

−I + S−1s
(
eikLσ̂3SL

)
+ e2ik2T σ̂3

∫ L

0
eikyσ̂3(Qµ4)(y, T , k) dy = 0.

The (12) element of this equation is equation (1.4). �

2.3. The jump conditions

Let M(x, t, k) be defined by

M+ =
(

µ
(1)
2

α(k)
, µ

(1)
4

)
arg k ∈

[
0,

π

2

]
M− =

(
µ

(2)
1

d(k)
, µ

(2)
3

)
arg k ∈

[π

2
, π

]

M+ =
(

µ
(3)
3 ,

µ
(3)
1

d(k̄)

)
arg k ∈

[
π,

3π

2

]
M− =

(
µ

(4)
4 ,

µ
(4)
2

α(k̄)

)
arg k ∈

[
3π

2
, 2π

]
(2.24)

where the scalars d(k) and α(k) are defined below, see (2.30) and (2.31).
These definitions imply

det M(x, t, k) = 1 (2.25)

and

M(x, t, k) = I + O

(
1

k

)
k → ∞. (2.26)
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Proposition 2.2. Let M(x, t, k) be defined by equations (2.24), where µ2(x, t, k), µ3(x, t, k)

are defined by equations (2.8), (2.9), µ1(x, t, k), µ4(x, t, k) are defined by similar equations
with

∫ t

0 replaced by − ∫ T

t
and q(x, t) is a smooth function. Then M satisfies the ‘jump’

condition

M−(x, t, k) = M+(x, t, k)J (x, t, k) k ∈ R ∪ iR (2.27)

where the 2 × 2 matrix J is defined by

J =




J2 arg k = 0

J1 arg k = π
2

J4 ≡ J3J
−1
2 J1 arg k = π

J3 arg k = 3π
2

(2.28)

and

J1 =

 δ(k)

d(k)
−B(k) e2ikL e−2iθ

λB(k̄)

d(k)α(k)
e2iθ a(k)

α(k)


 J3 =




δ(k̄)

d(k̄)

−B(k)

d(k̄)α(k̄)
e−2iθ

λB(k̄) e−2ikL e2iθ a(k̄)

α(k̄)




J2 =

 1 − β(k)

α(k)
e−2iθ

λ
β(k)

α(k)
e2iθ 1

|α(k)|2


 θ(x, t, k) = kx + 2k2t.

(2.29)

α(k) = a(k)A(k) + λb(k̄) e2ikLB(k) β(k) = b(k)A(k) + a(k̄) e2ikLB(k) (2.30)

d(k) = a(k)A(k̄) − λb(k)B(k̄) δ(k) = α(k)A(k̄) − λβ(k)B(k̄). (2.31)

Proof. Writing equations (2.17), (2.14) and (2.15) in vector form we find

µ
(4)
4 = ᾱµ

(1)
2 + λβ̄eµ

(4)
2 µ

(1)
4 = βēµ

(1)
2 + αµ

(4)
2 (2.32)

µ
(3)
3 = āµ

(1)
2 + λb̄eµ

(4)
2 µ

(2)
3 = bēµ

(1)
2 + aµ

(4)
2 (2.33)

µ
(2)
1 = Āµ

(1)
2 + λB̄eµ

(4)
2 µ

(3)
1 = B̄ēµ

(1)
2 + Aµ

(4)
2 (2.34)

where e = exp(2iθ). Recall that α and β are the (22) and (12) elements of s eikLσ̂3SL (see
(1.18)), thus

α(k)α(k̄) − λβ(k)β(k̄) = 1. (2.35)

Rearranging equations (2.32) and using equation (2.35) we find the jump condition across
arg k = 0.

In order to derive the jump condition across arg k = π
2 , we first eliminate µ

(4)
2 from

equations (2.32b) and (2.34a):

µ
(2)
1 = δµ

(1)
2

α
+

λB̄ e

α
µ

(1)
4 . (2.36a)

We then eliminate µ
(4)
2 from equations (2.32b) and (2.33b):

µ
(2)
3 = (bα − aβ)

ēµ
(1)
2

α
+

aµ
(1)
4

α
. (2.36b)

Using the identity

aβ − bα = e2ikLB (2.37)

and dividing equation (2.36a) by d, equations (2.36) define the jump across arg k = π
2 .
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The jump across arg k = 3π
2 follows from symmetry considerations and the jump across

arg k = π follows from the fact that the product of the jump matrices must equal the identity.
We note that the jump matrices have unit determinant; in particular regarding J1 we note

that

dα − λB̄B e2ikL = aδ. (2.38)

Indeed, the lhs of this equation equals

α(aĀ − λbB̄) − λB̄B e2ikL = αaĀ − λB̄(B e2ikL + αb) = αaĀ − λB̄aβ = aδ

where we have used the identity (2.37). �

2.4. The residue relations

Proposition 2.3. Let α(k) and d(k) be defined by equations (2.30) and (2.31) in terms of the
spectral functions considered in proposition 2.1. Assume that

• α(k) has simple zeros, {νj }, arg νj ∈ (
0, π

2

)
, and has no zeros for arg k = 0 and arg k = π

2 .
• d(k) has simple zeros, {λj }, arg λj ∈ (

π
2 , π

)
, and has no zeros for arg k = π

2 and
arg k = π .

• None of the zeros of d(k) for arg k ∈ (
π
2 , π

)
coincides with any of the zeros of a(k).

• None of the zeros of α(k) for arg k ∈ (
0, π

2

)
coincides with any of the zeros of a(k).

Let [M]1 and [M]2 denote the first and the second column of the matrix M. Then

Resk=νj
[M(x, t, k)]1 = c

(1)
j e4iν2

j t+2iνj x[M(x, t, νj )]2 (2.39)

Resk=ν̄j
[M(x, t, k)]2 = λc

(1)
j e−4iν̄2

j t−2iν̄j x[M(x, t, ν̄j )1 (2.40)

Resk=λj
[M(x, t, k)]1 = c

(2)
j e4iλ2

j t+2iλj x[M(x, t, λj )]2 (2.41)

Resk=λ̄j
[M(x, t, k)]2 = λc

(2)
j e−4iλ̄2

j t−2iλ̄j x[M(x, t, λ̄j )]1 (2.42)

where

c
(1)
j = a(νj )

e2iνj LB(νj )α̇(νj )
c
(2)
j = λB(λ̄j )

a(λj )ḋ(λj )
. (2.43)

Proof. Let us first note that the assumptions of the proposition, the definitions of the quantities
α(k) and d(k) (see (2.30) and (2.31)) and the identities

A(k)A(k̄) − λB(k)B(k̄) = 1 A(k)A(k̄) − λB(k)B(k̄) = 1

imply that

B(λ̄j ) �= 0 and B(νj ) �= 0

so that the rhs of equations (2.43) are well defined. We proceed now with the proof of the
proposition.

The matrix J1(x, t, k) defined in equations (2.29) can be factorized as follows:

J1(x, t, k) =
(

α(k)

a(k)
−B(k) e2ikL e−2iθ

0 a(k)

α(k)

) 
 1 0

λB(k̄) e2iθ

a(k)d(k)
1


 . (2.44)
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Indeed, the entries (12), (21), (22) are equal identically. The entries (11) are equal iff

δa = αd − λBB(k̄) e2ikL.

Replacing δ and d in this equation by their definitions (see equations (2.31)) we find the
identity (2.37).

Using the factorization (2.44), the jump condition M− = M+J1 becomes(
µ

(2)
1

d
, µ

(2)
3

)(
1 0

−λB̄ e2iθ

ad
1

)
=

(
µ

(1)
2

α
,µ

(1)
4

)(
α
a

−B e2ikL e−2iθ

0 a
α

)
. (2.45)

Evaluating the second column of this equation at k = νj (we recall that all the functions
involved are entire) we find

0 = −B(νj ) e2iνj L e−2iθ(νj )µ
(1)
2 (νj ) + a(νj )µ

(1)
4 (νj ) (2.46)

where for convenience of notation we have suppressed the x, t dependence of µ
(1)
2 , µ

(1)
4 , θ .

Hence,

Resk=νj
[M(x, t, k)]1 = µ

(1)
2 (x, t, νj )

α̇(νj )
= a(νj ) e2iθ(x,t,νj )µ

(1)
4 (x, t, νj )

e2iνj LB(νj )α̇(νj )

which, using µ
(1)
4 (x, t, νj ) = [M(x, t, νj )]2, becomes equation (2.39).

Similarly, evaluating the first column of equation (2.45) at k = λj we find

0 = µ
(2)
1 (λj ) − λB(λ̄j ) e2iθ(λj )

a(λj )
µ

(2)
3 (λj ).

Hence

Resk=λj
[M(x, t, k)]1 = µ

(2)
1 (x, t, λj )

ḋ(λj )
= λB(λ̄j ) e2iθ(x,t,λj )µ

(2)
3 (x,t,λj )

a(λj )ḋ(λj )

which yields (2.41).
Equations (2.40) and (2.42) follow from equations (2.39) and (2.41) using symmetry

considerations. �

3. Existence under the assumption that the global relation is valid

3.1. The spectral functions

The analysis of section 2 motivates the following definitions and results for the spectral
functions. The relevant rigorous analysis can be found in [6].

Definition 3.1 (the spectral functions a(k), b(k)). Given the smooth function q0(x), define the
vector φ(x, k) = (φ1, φ2)

† as the unique solution of

φ1x
+ 2ikφ1 = q0(x)φ2 φ2x

= λq̄0(x)φ1 0 < x < L k ∈ C φ(L, k) = (0, 1)†.

(3.1)

Given φ(x, k) define the functions a(k) and b(k) by

a(k) = φ2(0, k) b(k) = φ1(0, k) k ∈ C. (3.2)

Properties of a(k), b(k):

• a(k), b(k) are entire functions.
• a(k)a(k̄) − λb(k)b(k̄) = 1, k ∈ C.
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•

a(k) = 1 + O

(
1 + e2ikL

k

)
b(k) = O

(
1 + e2ikL

k

)
k → ∞.

In particular,

a(k) b(k) a(k̄) e2ikL b(k̄) e2ikL are bounded for arg k ∈ [0, π ]. (2.22)

We shall also assume that a(k) has at most simple zeros, {kj }, for Im kj > 0 and has no zeros
for Im k = 0.

Remark 3.1. Definition 3.1 gives rise to the map

S : {q0(x)} → {a(k), b(k)}. (3.3a)

The inverse of this map,

Q : {a(k), b(k)} → {q0(x)} (3.3b)

can be defined as follows:

q0(x) = 2i lim
k→∞

(kM(x)(x, k))12 (3.4)

where M(x)(x, k) is the unique solution of the following RH problem:

•

M(x)(x, k) =
[
M

(x)
− (x, k) Im k � 0

M
(x)
+ (x, k) Im k � 0,

is a sectionally meromorphic function with unit determinant.
•

M
(x)
− (x, k) = M(x)

+ (x, k)J (x)(x, k) k ∈ R

where

J (x)(x, k) =

 1 − b(k)

ā(k)
e−2ikx

λb̄(k) e2ikx

a(k)
1

|a|2


 .

•
M(x)(x, k) = I + O

(
1

k

)
k → ∞.

• The first column of M
(x)
+ can have simple poles at k = kj , and the second column of M

(x)
−

can have simple poles at k = k̄j , where {kj } are the simple zeros of a(k), Im kj > 0. The
associated residues are given by

Resk=kj
[M(x)(x, k)]1 = e2ikj x

ȧ(kj )b(kj )
[M(x)(x, kj )]2,

Resk=k̄j
[M(x)(x, k)]2 = λ e−2ik̄j x

ȧ(kj )b(kj )
[M(x)(x, k̄j )]1.

(3.5)

It can be shown (see, for example, [6]) that

S−1 = Q. (3.3c)
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Definition 3.2 (the spectral functions A(k), B(k)). Let

Q(0)(t, k) = 2k

(
0 g0(t)

λḡ0(t) 0

)
− i

(
0 g1(t)

λḡ1(t) 0

)
σ3 − iλ|g0(t)|2σ3 λ = ±1.

(3.6)

Given the smooth functions g0(t), g1(t), define the vector �(t, k) = (�1,�2)
† as the unique

solution of

�1t
+ 4ik2�1 = Q

(0)
11 �1 + Q

(0)
12 �2

�2t
= Q

(0)
21 �1 + Q

(0)
22 �2 0 < t < T k ∈ C

�(0, k) = (0, 1)†.

(3.7)

Given �(t, k) define the functions A(k) and B(k) by

A(k) = �2(T , k̄) B(k) = −�1(T , k) e4ik2T . (3.8)

Properties of A(k), B(k):

• A(k), B(k) are entire functions.
• A(k)A(k̄) − λB(k)B(k̄) = 1, k ∈ C.
•

A(k) = 1 + O

(
1 + e4ik2T

k

)
B(k) = O

(
1 + e4ik2T

k

)
k → ∞. (2.23)

In particular,

A(k) B(k) are bounded for arg k ∈
[
0,

π

2

]
∪

[
π,

3π

2

]
.

We shall also assume that A(k) has at most simple zeros, {Kj }, for arg Kj ∈ (
0, π

2

) ∪(
π, 3π

2

)
and has no zeros for arg k = 0, π

2 , π , 3π
2 .

Remark 3.2. Definition 3.2 gives rise to the map

S(0) : {g0(t), g1(t)} → {A(k), B(k)}. (3.9a)

The inverse of this map

Q(0) : {A(k), B(k)} → {g0(t), g1(t)} (3.9b)

can be defined as follows,

g0(t) = 2i lim
k→∞

(kM(0)(t, k))12

g1(t) = lim
k→∞

{4(k2M(0)(t, k))12 + 2ig0(t)k(M(0)(t, k) − I )22}

where M(0)(t, k) is the unique solution of the following RH problem:

•

M(0)(t, k) =
[
M

(0)
+ (t, k) arg k ∈ [

0, π
2

] ∪ [
π, 3π

2

]
M

(0)
− (t, k) arg k ∈ [

π
2 , π

] ∪ [
3π
2 , 2π

]
is a sectionally meromorphic function with unit determinant.
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•
M

(0)
− (t, k) = M(0)

+ (t, k)J (0)(t, k) k ∈ R ∪ iR

where

J (0)(t, k) =

 1 −B(k)

A(k̄)
e−4ik2t

λB(k̄) e4ik2 t

A(k)
1

A(k)A(k̄)
.




•
M(0)(t, k) = I + O

(
1

k

)
k → ∞.

• The first column of M
(0)
+ (t, k) can have simple poles at k = Kj and the second column

of M
(0)
− (t, k) can have simple poles at k = K̄j , where Kj are the simple zeros of A(k),

arg k ∈ (
0, π

2

) ∪ (
π, 3π

2

)
. The associated residues are given by

Resk=Kj
[M(0)(t, k)]1 = exp

[
4iK2

j t
]

Ȧ(Kj )B(Kj )
[M(0)(t, Kj )]2,

Resk=K̄j
[M(0)(t, k)]2 = λ exp

[−4iK̄2
j t

]
Ȧ(Kj )B(Kj )

[M(0)(t, K̄j )]1.

It can be shown, see again [6], that

(S(0))−1 = Q(0). (3.9c)

Definition 3.3 (the spectral functions A(k),B(k)). Let Q(L)(t, k) be defined by an equation
similar to (3.6) with g0(t), g1(t) replaced by f0(t), f1(t). Given the smooth functions
f0(t), f1(t) define the vector ϕ(t, k) by equations similar to (3.7) with Q(0)(t, k) replaced
by Q(L)(t, k). Given ϕ(t, k) define A(k) and B(k) by

A(k) = ϕ2(T , k̄),B(k) = −ϕ1(T , k) e4ik2T . (3.10)

Properties of A(k),B(k):
Identical to those of A(k), B(k). We will denote the zeros of A(k) by Kj .

Remark 3.3. The maps

S(L) : {f0(t), f1(t)} → {A(k),B(k)} (3.11a)

and

Q(L) : {A(k),B(k)} → {f0(t), f1(t)}, (3.11b)

are defined exactly as in remark 3.2, where we use the notation

M(L)(t, k) J (L)(t, k) Kj instead of M(0)(t, k) J (0)(t, k) Kj . (3.12)

In analogy with equation (3.9c) we find

(S(L))−1 = Q(L). (3.11c)

Definition 3.4 (an admissible set). Given the smooth function q0(x) define a(k), b(k) according
to definition 3.1. Suppose that there exist smooth functions g0(t), g1(t), f0(t), f1(t), such that
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• The associated A(k), B(k),A(k),B(k), defined according to definitions 3.2 and 3.3,
satisfy the relation

(aA + λb̄ e2ikLB)B − (bA + ā e2ikLB)A = e4ik2t c+(k) k ∈ C (3.13)

where c+(k) is an entire function, which is bounded for Im k � 0 and c+(k) =
O

(
1+e2ikL

k

)
, k → ∞.

•
g0(0) = q0(0) g1(0) = q ′

0(0) f0(0) = q0(L) f1(0) = q ′
0(L). (3.14)

Then we call the functions g0(t), g1(t), f0(t), f1(t) an admissible set of functions with
respect to q0(x).

3.2. The Riemann–Hilbert problem

Theorem 3.1. Let q0(x) be a smooth function. Suppose that the set of functions g0(t),

g1(t), f0(t), f1(t), is admissible with respect to q0(x), see definition 3.4. Define the spectral
functions a(k), b(k), A(k), B(k),A(k),B(k) in terms of q0(x), g0(t), g1(t), f0(t), f1(t),
according to definitions 3.1, 3.2 and 3.3. Assume that

• a(k) has at most simple zeros, {kj }, for Im kj > 0 and has no zeros for Im k = 0.
• A(k) has at most simple zeros, {Kj }, for arg Kj ∈ (

0, π
2

) ∪ (
π, 3π

2

)
and has no zeros for

arg k = 0, π
2 , π , 3π

2 .
• A(k) has at most simple zeros, {Kj }, for argKj ∈ (

0, π
2

) ∪ (
π, 3π

2

)
and has no zeros for

arg k = 0, π
2 , π , 3π

2 .
• The function

d(k) = a(k)A(k̄) − λb(k)B(k̄) (3.15)

has at most simple zeros, {λj }, for arg λj ∈ (
π
2 , π

)
and has no zeros for arg k = π

2 and
arg k = π .

• The function

α(k) = a(k)A(k) + λb(k̄) e2ikLB(k) (3.16)

has at most simple zeros, {νj }, for arg νj ∈ (
0, π

2

)
and has no zeros for arg k = 0

arg k = π
2 .

• None of the zeros of a(k) for arg k ∈ (
π
2 , π

)
coincides with a zero of d(k).

• None of the zeros of a(k) for arg k ∈ (
0, π

2

)
coincides with a zero of α(k).

• None of the zeros of α(k) for arg k ∈ (
0, π

2

)
coincides with a zero of A(k) or a zero

of A(k).

• None of the zeros of d(k) for arg k ∈ (
π
2 , π

)
coincides with a zero of A(k̄) or a zero

of A(k̄).

Define M(x, t, k) as the solution of the following 2 × 2 matrix RH problem:

• M is sectionally meromorphic in C/{R ∪ iR}, and has unit determinant.
•

M−(x, t, k) = M+(x, t, k)J (x, t, k) k ∈ R ∪ iR (3.17)

where M is M− for arg k ∈ [
π
2 , π

] ∪ [
3π
2 , 2π

]
,M is M+ for arg k ∈ [

0, π
2

] ∪ [
π, 3π

2

]
, and

J is defined in terms of a, b,A,B, A,B, by equations (2.28) and (2.29).
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•

M(x, t, k) = I + O

(
1

k

)
k → ∞. (3.18)

• Residue conditions (2.39)–(2.43).

Then M(x, t, k) exists and is unique. Define q(x, t) in terms of M(x, t, k) by

q(x, t) = 2i lim
k→∞

k(M(x, t, k))12. (3.19)

Then q(x, t) solves the NLS equation (1.1) with

q(x, 0) = q0(x) q(0, t) = g0(t) qx(0, t) = g1(t)

q(L, t) = f0(t) qx(L, t) = f1(t).
(3.20)

Proof. If α(k) and d(k) have no zeros for arg k ∈ (
0, π

2

)
and arg k ∈ (

π
2 , π

)
respectively,

then the function M(x, t, k) satisfies a non-singular RH problem. Using the fact that the jump
matrix J satisfies appropriate symmetry conditions it is possible to show that this problem has
a unique global solution [19]. The case where α(k) and d(k) have a finite number of zeros can
be mapped to the case of no zeros supplemented by an algebraic system of equations which is
always uniquely solvable [19]. �

Proof that q(x, t) satisfies the NLS. Using arguments of the dressing method [2], it can be
verified directly that if M(x, t, k) is defined as the unique solution of the above RH problem,
and if q(x, t) is defined in terms of M by equation (3.19), then q and M satisfy both parts of
the Lax pair, hence q solves the NLS equation.

Proof that q(x, 0) = q0(x). Let the 2 × 2 matrices Ĵ 1(x, k), Ĵ 3(x, k), J (∞)
1 (x, k), J

(∞)
2 (x, k),

J
(∞)
3 (x, k) be defined by

Ĵ 1 =
(

α(k)

a(k)
−B(k) e2ik(L−x)

0 a(k)

α(k)

)
Ĵ 3 =




α(k̄)

a(k̄)
0

λB(k̄) e−2ik(L−x) a(k̄)

α(k̄)




J
(∞)
1 =


 1 0

λB(k̄) e2ikx

a(k)d(k)
1


 J

(∞)
3 =


 1 −B(k) e−2ikx

a(k̄)d(k̄)

0 1


 . (3.21)

J
(∞)
2 =


 1 − b(k)

a(k̄)
e−2ikx

λ b(k̄)

a(k)
e2ikx 1

a(k)a(k̄)


 .

It can be verified that

J1(x, 0, k) = Ĵ 1J
(∞)
1 J2(x, 0, k) = Ĵ 1J

(∞)
2 Ĵ 3

(3.22)
J3(x, 0, k) = J

(∞)

3 Ĵ 3 J4(x, 0, k) = J
(∞)
3

(
J

(∞)
2

)−1
J

(∞)
1 .

Let M(1)(x, t, k),M(2)(x, t, k),M(3)(x, t, k), M(4)(x, t, k) denote M(x, t, k) for arg k ∈[
0, π

2

]
, . . . , arg k ∈ [

3π
2 , 2π

]
. Then the jump condition (2.27) becomes

M(2) = M(1)J1 M(2) = M(3)J4 M(4) = M(1)J2 M(4) = M(3)J3. (3.23)
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Evaluating these equations at t = 0 and using equations (3.22) we find

M(2)(x, 0, k) = (M(1)(x, 0, k)Ĵ 1)J
(∞)
1 M(2)(x, 0, k) = M(3)(x, 0, k)J

(∞)
3

(
J

(∞)
2

)−1
J

(∞)
1(

M(4)(x, 0, k)Ĵ −1
3

) = (M(1)(x, 0, k)Ĵ 1)J
(∞)
2

(
M(4)(x, 0, k)Ĵ −1

3

) = M(3)(x, 0, k)J
(∞)
3 .

(3.24)

Defining M
(∞)
j (x, k), j = 1, . . . , 4, by

M
(∞)
1 = M(1)(x, 0, k)Ĵ 1(x, k) M

(∞)
2 = M(2)(x, 0, k) (3.25a)

M
(∞)
3 = M(3)(x, 0, k) M

(∞)
4 = M(4)(x, 0, k)Ĵ −1

3 (x, k) (3.25b)

we find that the sectionally holomorphic function M(∞)(x, k) satisfies the jump conditions

M
(∞)
2 = M

(∞)
1 J

(∞)
1 M

(∞)
2 = M

(∞)
3 J

(∞)
3

(
J

(∞)
2

)−1
J

(∞)
1

M
(∞)
4 = M

(∞)
1 J

(∞)
2 M

(∞)
4 = M

(∞)
3 J

(∞)
3 .

These conditions are precisely the jump conditions satisfied by the unique solution of the RH
problem associated with the NLS for 0 < x < ∞, 0 < t < T [6]. Also det M(∞) = 1 and
M(∞) = I + O

(
1
k

)
, k → ∞. Moreover, by a straightforward calculation one can verify that

the transformation (3.25) replaces poles at νj by poles at kj , with the residue conditions (2.39),
(2.40), replaced by the proper residue conditions at k = kj (cf [6]). Therefore, M(∞)(x, k)

satisfies the same RH problem as the RH problem associated with the half-line evaluated at
t = 0. Hence q(x, 0) = q0(x).

Proof that q(0, t) = g0(t), qx(0, t) = g1(t). Let M(0)(t, k) be defined by

M(0)(t, k) = M(0, t, k)G(t, k) (3.26)

where G is given by G(1), . . . ,G(4), for arg k ∈ [
0, π

2

]
, . . . ,

[
3π
2 , 2π

]
. Suppose we can find

matrices G(j) which are holomorphic, tend to I as k → ∞, and satisfy

J1(0, t, k)G(2) = G(1)J (0) J2(0, t, k)G(4) = G(1)J (0) J3(0, t, k)G(4) = G(3)J (0)

(3.27)

where J (0)(t, k) is defined in remark 3.2. Then equations (3.27) yield J4(0, t, k)G(2) =
G(3)J (0), and equations (3.23) and (3.26) imply that M(0)(t, k) satisfies the RH problem
defined in remark 3.2. Then remark 3.2 implies the desired result.

We will show that such G(j) matrices are

G(1) =
(

α(k)

A(k)
c+(k) e4ik2(T −t)

0 A(k)

α(k)

)
G(4) =




A(k̄)

α(k̄)
0

λc+(k̄) e−4ik2(T −t) α(k̄)

A(k̄)




G(2) =
(

d(k) −b(k)

A(k̄)
e−4ik2t

0 1
d(k)

)
G(3) =


 1

d(k̄)
0

−λb(k̄)

A(k)
e4ik2t d(k̄)


 .

(3.28)

We recall that in the half-line problem the associated matrices J∞
2 (0, t, k),G∞(1)(t, k),

G∞(4)(t, k) satisfy

J∞
2 (0, t, k)G∞(4) = G∞(1)J (t). (3.29)

For the verification of this equation one uses

aā − λbb̄ = 1 AĀ − λBB̄ = 1 aB − bA = e4ik2T c+. (3.30)
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The matrix J2(0, t, k) can be obtained from the matrix J∞
2 (0, t, k) by replacing a and b with

α and β; furthermore, α, β,A,B satisfy equations similar to equations (3.30) where a and b
are replaced by α and β. Hence, G(4) and G(1) follow from G∞(4) and G∞(1) by replacing a
and b by α and β; this yields the first two equations of (3.28).

Having obtained G(1), the first of equations (3.27) yields G(2) (then G(3) follows from
symmetry considerations). Rather than deriving G(1) we verify that it satisfies the equation
J1(0, t, k)G(2) − G(1)J (0) = 0: The (21) and (22) elements are satisfied identically. The (11)
element is satisfied iff

δ = α

A
+

λB̄

A
c+ e4ik2T . (3.31)

But

δ = αĀA

A
− λβB̄ = α

A
(1 + λBB̄) − λβB̄ = α

A
+

λB̄

A
(αB − βA)

which equals the rhs of (3.31) in view of the global relation. The (12) element is satisfied iff

δb

dĀ
+
B e2ikL

d
= αB

AĀ
− c+ e4ik2T

AĀ

which, using the global relation to replace c+ exp(4ik2T ), becomes

δb + ĀB e2ikL = βd. (3.32)

The rhs of this equation is

b(αĀ − λβB̄) + ĀB e2ikL = −λβbB̄ + Ā(αb + B e2ikL)

which equals the rhs of equation (3.32) using the identity (2.37).
Similar to the proof of the equation q(x, 0) = q0(x), it can be verified that the

transformation (3.26) replaces the residue conditions (2.39)–(2.43) by the residue conditions
of remark 3.2.

Proof that q(L, t) = f0(t), qx(L, t) = f1(t). Following arguments similar to the proof above
we seek matrices F (j)(t, k) such that

J1(L, t, k)F (2) = F (1)J (L) J4(L, t, k)F (2) = F (3)J (L) J3(L, t, k)F (4) = F (3)J (L).

(3.33)

(it is more convenient to use the second of these equations instead of J2(L, t, k)F (4) =
F (1)J (L), see below). We will show that such F (j) matrices are

F (1) =

 −1 0

−λb(k̄) e4ik2 t+2ikL

α(k)A(k)
−1


 F (4) =


 −1 −b(k) e−4ik2 t−2ikL

α(k̄)A(k̄)

0 −1




F (3) =

 − 1

A(k)

c+(k) e4ik2(T −t)−2ikL

d(k̄)

0 −A(k)


 F (2) =


 −A(k̄) 0

λc+(k̄) e−4ik2(T −t)+2ikL

d(k)
− 1

A(k̄)


 .

(3.34)

The matrix J4(L, t, k) can be written in the form

J4(L, t, k) = �(k̄)J̃ 4(t, k)�(k) (3.35)

where

�(k) = diag

(
e2ikL

d(k)
, e−2ikLd(k)

)
(3.36)
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J̃ 4(t, k) =

 1 − β̃(k)

(−d(k) e−2ikL)
e−4ik2t

λβ̃(k̄) e4ik2 t

(−d(k̄) e2ikL)

1
d(k)d(k̄)


 (3.37)

β̃(k) = A(k)b(k) − B(k)a(k). (3.38)

Thus the second of equations (3.33) becomes

J̃ 4(t, k)�(k)F (2) = (�(k̄))−1F (3)J (L). (3.39)

The functions β̃(k), α̃(k) = −e2ikLd(k̄),A(k),B(k) satisfy the following equations:

α̃ ¯̃α − λβ̃ ¯̃β = 1 AĀ − λBB̄ = 1 α̃B − β̃A = e4ik2T c+(k). (3.40)

Indeed the first of these equations is det J̃ 4 = 1 and the third of these equations is the global
relation. Thus, comparing equation (3.39) with (3.29) it follows that (�(k̄))−1F (3) can be
obtained from G(∞)(1) with a, b,A,B replaced by α̃, β̃,A,B; this yields the latter two of
equations (3.34).

Having determined F (2), the first of equations (3.33) yields F (1). Rather than deriving
F (1) we show that the equation F (1)J (L) − J1(L, t, k)F (2) = 0 is valid: the (12) and (22)
elements are satisfied identically. The (21) element is satisfied iff

ĀB̄ e2ikL

dα
− ac̄+ e−4ik2T +2ikL

dα
= b̄ e2ikL

αA
+

B̄
A

.

Using the global relation to replace exp[−4ik2T ], and then using 1 − aā = −λbb̄, the above
equation becomes

A(aB̄ + b̄Ā e2ikL) = b̄ e2ikL + B̄α.

Using the definition of α, as well as AĀ − λBB̄ = 1, the above equation becomes an
identity. The direct verification of the (11) element can be avoided by using the equality of
the determinants.

Similar to the previous case, the transformation

M(L, t, k) 	→ M(L)(t, k) = M(L, t, k)F (t, k)

maps the Riemann–Hilbert problem of theorem 3.1 to the Riemann–Hilbert problem of
remark 3.3.

4. The analysis of the global relation

Evaluating equation (2.17) at x = 0, instead of x = 0, t = T , we find instead of equation (1.4)
the following equation:

(a(k)A(t, k) + λb(k̄) e2ikLB(t, k))B(t, k) − (b(k)A(t, k) + λa(k̄) e2ikLB(t, k))A(t, k)

= e4ik2t c+(k, t) k ∈ C

(4.1)

where c+(k, t) has the form

c+(k, t) =
∫ L

0
e2ikxc(k, x, t) dx (4.2)

and c(k, x, t) is the entire function in k which, together with its x and t derivatives, is of O(1)

as k → ∞ and k is in the first quadrant. This in turn implies that c+(k, t) is an entire function
in k which is of O(1/k) as → ∞, Im k > 0; in fact,

c+(k) = O

(
1 + e2ikL

k

)
k → ∞.
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For the analysis of equation (4.1) we will use the following two identities:∫
∂D1

k

[∫ t

0
e4ik2(τ−t ′)K(τ, t) dτ

]
dk = π

4
K(t ′, t) (4.3)

∫
∂D0

1

k2

�(k)

[∫ t

0
e4ik2(τ−t ′)K(τ, t) dτ

]
dk

=
∫

∂D0
1

k2

�(k)

[∫ t ′

0
e4ik2(τ−t ′)K(τ, t) dτ − K(t ′, t)

4ik2

]
dk (4.4)

where

t > 0 t ′ > 0 t ′ < t.

∂D1 denotes the union of the contour (i∞, 0] and of the contour [0,∞) (i.e. the oriented
boundary of the first quadrant), ∂D0

1 denotes the contour obtained by deforming ∂D1 to
the contour passing above the points k = πm

2L
, n ∈ Z+,K(τ, t) is a smooth function of the

arguments indicated and

�(k) = e2ikL − e−2ikL. (4.5)

Indeed, in order to derive equation (4.4) we rewrite the lhs of this equation as the rhs plus the
term ∫

∂D0
1

k2

�(k)

[∫ t

t ′
e4ik2(τ−t ′)K(τ, t) dτ +

K(t ′, t)
4ik2

]
dk.

The integrand of the above integral is analytic and bounded in the domain of the complex-k
plane enclosed by ∂D0

1. Also its zero-order term (with respect to (k2)−1) contains the
oscillatory factor e4ik2(t−t ′), thus Jordan’s lemma implies that this term vanishes. Similarly, in
order to derive equation (4.3) we rewrite the lhs of this equation in the form∫

∂D1

k

[∫ t ′

0
e4ik2(τ−t ′)K(τ, t) dτ

]
dk +

∫
∂D1

k

[∫ t

t ′
e4ik2(τ−t ′)K(τ, t) dτ

]
dk. (4.6)

The contour ∂D1 involves the contour [0,∞), which can be mapped to the contour [0,−∞) by
replacing k with −k, thus ∂D1 can be replaced by ∂D2 which denotes the union of the contours
(i∞, 0] and [0,−∞). Hence replacing ∂D1 by ∂D2 in the first integral of the expression (4.6)
we have∫

∂D̂2

[∫ t ′

0
e4ik2(τ−t ′)kK(τ, t) dτ − K(t ′, t)

4ik

]
dk +

K(t ′, t)
4i

∫
∂D̂2

dk

k

+
∫

∂D̂1

[∫ t

t ′
e4ik2(τ−t ′)kK(τ, t) dτ +

K(t ′, t)
4ik

]
dk − K(t ′, t)

4i

∫
∂D̂1

dk

k

where D̂ indicates that we have indented the contour D to avoid k = 0. The first and the third
integrals vanish, since the first and the third integrands are analytic and decaying in D̂2 and
D̂1 respectively, and their first-order terms (with respect to k−1) contain the oscillatory factors
e−4ik2t ′ and e4ik2(t−t ′) respectively. The remaining two integrals equal

K(t ′, t)
4i

∫ π

0
idθ = π

4
K(t ′, t).

We will now show that the global relation (4.1) can be explicitely solved for f1(t) and
g1(t). To avoid routine technical complications we shall consider here the case of zero initial
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conditions, which yields a(k) ≡ 1 and b(k) ≡ 0. We will show that in this case the expressions
for f1(t) and g1(t) are

iπ

4
f1(t) =

∫
∂D0

1

2k2

�(k)

[
M̂1(t, k) − g0(t)

2ik2

]
dk −

∫
∂D0

1

k2 �(k)

�(k)

[
M̂1(t, k) − f0(t)

2ik2

]
dk

+
∫

∂D0
1

k

�(k)
[F(t, k) − F(t,−k)] dk (4.7)

− iπ

4
g1(t) =

∫
∂D0

1

2k2

�(k)

[
M̂1(t, k) − f0(t)

2ik2

]
dk −

∫
∂D0

1

k2 �(k)

�(k)

[
M̂1(t, k) − g0(t)

2ik2

]
dk

−
∫

∂D0
1

k

�(k)
[e−2ikLF (t, k) − e2ikLF (t,−k)] dk (4.8)

where

�(k) = e2ikL + e−2ikL (4.9)

and

F(t, k) = if0(t)

2
e2ikLM̂2 − ig0(t)

2
M̂2 +

[
L̂2 − iλ

f0(t)

2
M̂1 + kM̂2

][
L̂1 − i

g0(t)

2
M̂2 + kM̂1

]

− e2ikL

[
L̂2 − iλ

g0(t)

2
M̂1 + kM̂2

] [
L̂1 − i

f0(t)

2
M̂2 + kM̂1

]
. (4.10)

Indeed, substituting in equation (4.1) (with a ≡ 1 and b ≡ 0) the expressions for A,B from
equations (1.12) as well as the analogous expressions for A,B we find

−2
∫ t

0
e4ik2τL1(t, 2τ − t) dτ + 2 e2ikL

∫ t

0
e4ik2τL1(t, 2τ − t) dτ

= 2k

∫ t

0
e4ik2τM1(t, 2τ − t) dτ − 2k e2ikL

∫ t

0
e4ik2τM1(t, 2τ − t) dτ

+ e4ik2tF (t, k) + e4ik2t c+(t, k). (4.11)

Regarding F(t, k) we note that we first write F(t, k) in terms of {Lj(t, k),Mj (t, k),

Lj (t, k),Mj (t, k)}2
1 and then use equations (1.15) to rewrite F(t, k) in the form (4.10).

Using integration by parts it follows that e4ik2tF (t, k) = O(1/k2) as k → ∞.
Replacing k by −k in equation (4.11) and solving the resulting equation as well as

equation (4.11) for the two integrals appearing on the lhs of equation (4.11), we find the
following:

2
∫ t

0
e4ik2τL1(t, 2τ − t) dτ = 4k

�(k)

∫ t

0
e4ik2τM1(t, 2τ − t) dτ

− 2k
�(k)

�(k)

∫ t

0
e4ik2τM1(t, 2τ − t) dτ +

G(t, k) − G(t,−k)

�(k)
(4.12)

and

−2
∫ t

0
e4ik2τL1(t, 2τ − t) dτ = 4k

�(k)

∫ t

0
e4ik2τM1(t, 2τ − t) dτ

−2k
�(k)

�(k)

∫ t

0
e4ik2τM1(t, 2τ − t) dτ − e−2ikLG(t, k) − e2ikLG(t,−k)

�(k)

(4.13)
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where

G(t, k) = e4ik2tF (t, k) + e4ik2t c+(t, k).

We multiply equation (4.12) by k exp(−4ik2t ′), t ′ > 0, t ′ < t , and integrate over ∂D0
1. In this

respect we note that the function

k

[
c+(t, k) − c+(t,−k)

�(k)

]

is analytic and bounded in the interior of ∂D0
1, thus the integral of the term

k e4ik2(t−t ′)
[
c+(t, k) − c+(t,−k)

�(k)

]
vanishes. The integrals involving L1 and M1 can be computed using equations (4.3) and (4.4),
respectively. Also, the term involving M1 can be computed using equation (4.4) with 1/�

replaced by �/�. In this way we find that

π

2
L1(t, 2t ′ − t) =

∫
∂D0

1

4k2

�(k)

[∫ t ′

0
e4ik2(τ−t ′)M1(t, 2τ − t) dτ − M1(t, 2t ′ − t)

4ik2

]
dk

−
∫

∂D0
1

2k2 �(k)

�(k)

[∫ t ′

0
e4ik2(τ−t ′)M1(t, 2τ − t) dτ − M1(t, 2t ′ − t)

4ik2

]
dk

+
∫

∂D0
1

k

�(k)
e4ik2(t−t ′)(F (t, k) − F(t,−k)) dk.

Evaluating this equation at t = t ′ and using the first and third equations of equations (1.10)
and (1.11) respectively we find equation (4.7). The derivation of equation (4.8) is similar.

5. Conclusions

We have analysed the Dirichlet problem for the nonlinear Schrödinger equation on the finite
interval, see equations (1.1). In particular,

(i) Given the Dirichlet data q(0, t) = g0(t) and q(L, t) = f0(t), we have characterized
the Neumann boundary values qx(0, t) = g1(t) and qx(L, t) = f1(t) through a
system of nonlinear ODEs for the functions (1.14). The functions {L̂j , M̂j }2

j=1 satisfy

equations (1.16), the functions {L̂j ,M̂j }2
j=1 satisfy similar equations and the Neumann

boundary values are given by equations (4.7) and (4.8).
(ii) Given the initial condition q(x, 0) = q0(x) we have defined {a(k), b(k)}, see

definition 3.1. Given g0(t) and g1(t) we have defined {A(k), B(k)}, and given f0(t)

and f1(t) we have defined {A(k),B(k)}, see definitions 3.2 and 3.3.
(iii) Given {a(k), b(k), A(k), B(k),A(k),B(k)} we have defined a Riemann–Hilbert problem

for M(x, t, k) and then we have defined q(x, t) in terms of M. We have shown that q(x, t)

solves the nonlinear Schrödinger and that

q(x, 0) = q0(x) q(0, t) = g0(t) qx(0, t) = g1(t)

q(L, t) = f0(t) qx(L, t) = f1(t)

see theorem 3.1.

A general method for analysing initial-boundary value problems for integrable PDEs
was introduced in [5]. This method is based on the simultaneous spectral analysis of the
two eigenvalue equations forming the associated Lax pair, and on the investigation of the
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global relation satisfied by the relevant spectral functions. The rigorous implementation of
this method to the NLS on the half-line was presented in [6]. Analogous results for the sine
Gordon, KdV (with dominant surface tension) and modified KdV equation were presented in
[7, 8]. The most difficult step of this method is the analysis of the global relation. Rigorous
results for this problem were obtained in [6] by analysing the global relation, which is a scalar
equation relating g0, g1, �, together with the equation satisfied by �, which is a vector equation
relating g0, g1, �. This analysis is quite complicated and this is partly due to the fact that these
two equations are coupled. An important development in this direction was announced in [4],
where it was shown that if one uses the Gelfand–Levitan–Marchenko representation for �,
then the above two equations can be decoupled. Indeed, the global relation can be explicitly
solved for g1 in terms of g0 and � (or more precisely in terms of L̂j , M̂j , j = 1, 2). In this
paper we have extended the results of [4, 6] to the case that the NLS is defined on a finite
interval instead of the half-line.

The analysis of the analogous problem for the modified KdV equation but without using
the new results of [4] is presented in [9, 10].

A different approach to this problem, which instead of the Riemann–Hilbert formalism
uses the periodic extension to the whole line, is presented in [12].

For integrable evolution PDEs on the half-line, there exist particular boundary conditions
for which the nonlinear Volterra integral equations can be avoided. For these boundary
conditions, which we call linearizable, the global relation yields directly S(k) in terms of
s(k) and the prescribed boundary conditions [6, 7]. Different aspects of linearizable boundary
conditions have been studied by a number of authors, see for example [13–16]. The analysis of
linearizable boundary conditions for the NLS on a finite domain will be presented elsewhere.
Here we only note that x-periodic boundary conditions belong to the linearizable class. In
this case S(k) = SL(k) and the global relation simplifies. The analysis of this simplified
global relation, together with the results presented in this paper, yields a new formalism for
the solution of this classical problem.
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